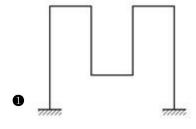
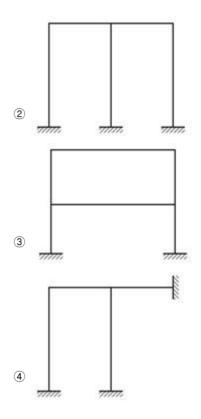
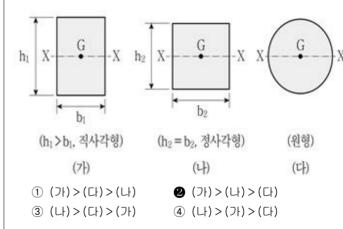

1과목 : 과목 구분 없음

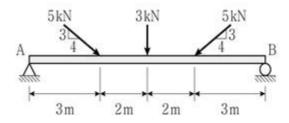

- 1. 전단탄성계수 G에 대한 설명으로 옳은 것은? (단, 포아송비 v는 이다)
 - ① 탄성계수 E보다 크고, 포아송비 v가 커짐에 따라 증가한 다.
 - ② 탄성계수 E보다 작고, 포아송비 v가 커짐에 따라 증가한 다.
 - ③ 탄성계수 E보다 크고, 포아송비 v가 커짐에 따라 감소한 다
 - ① 탄성계수 E보다 작고, 포아송비 v가 커짐에 따라 감소한다.
- 2. 그림과 같이 크기가 같고 방향이 반대인 우력이 작용할 때, 옳지 않은 설명은? (단, a, b, c는 0보다 큰 상수이다)

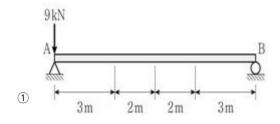


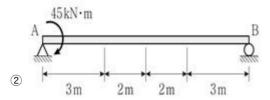
- ① A점 C점의 모멘트의 크기가 같다.
- ② B점 D점의 모멘트의 방향이 같다.
- ③ A점 D점의 모멘트의 크기와 방향이 모두 같다.
- B점 C점의 모멘트의 크기는 다르나 방향은 같다.
- 3. 그림과 같이 음영으로 표시된 도형에서 도심까지의 거리 y₀는?

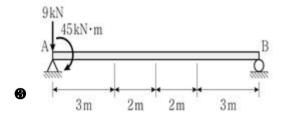


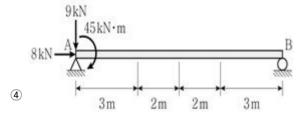
- 11.5
- **2** 12.5
- ③ 13.5
- (4) 14.5
- 4. 다음은 부정정 라멘 구조물이다. 부정정 차수가 다른 하나는?

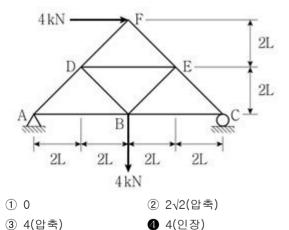


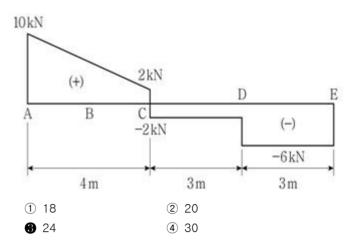


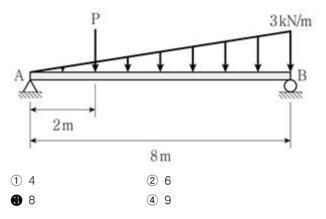

5. 그림과 같은 단면적이 동일한 3개의 단면에 대하여 도심축(X 축)에 대한 단면2차모멘트의 크기 순서로 옳게 표현된 것은?

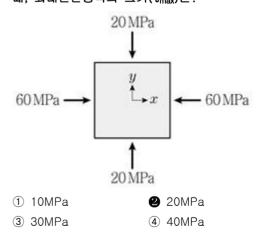


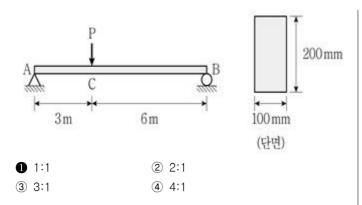

- 6. 길이 L인 단순보에 대하여, 부재 중앙에 수직집중하중 P가 작용할 때의 최대휨모멘트(M_{max(p)})와 수직등분포하중 w가 전 체 보에 작용할 때의 최대휨모멘트(M_{max(w)})가 같다면, 등분포 하중 w의 크기는?
 - ① P/2L
- 2 P/L
- **3** 2P/L
- 4 3P/L
- 7. 그림과 같이 단순보에 하중이 작용할 때, A점에 작용하는 등 가의 힘-우력계로 옳게 나타낸 것은?

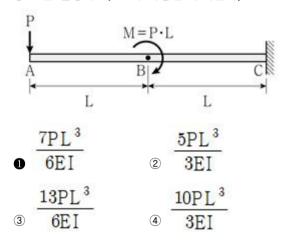


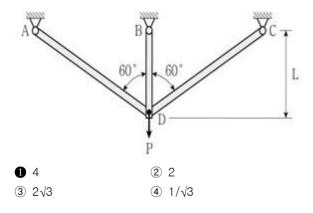


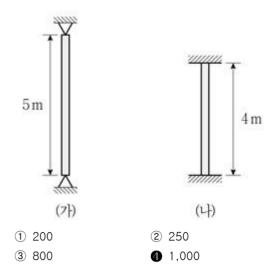

8. 그림과 같은 하중을 받는 트러스 구조물에서 부재 AB의 부재 력[kN]은? (단, 부재의 축강성 EA는 일정하고, 구조물의 자 중은 무시한다)

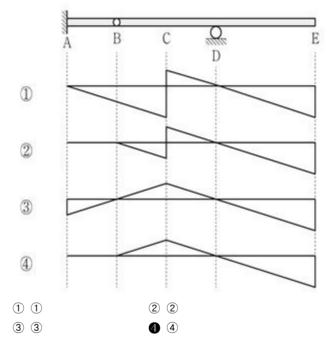

9. 그림은 단순보의 전단력도(S.F.D.)를 나타낸 것이다. 단순보 에 발생하는 최대휨모멘트의 크기[kN·m]는?

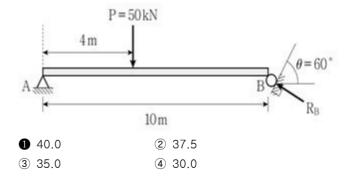

10. 그림과 같이 단순보에 3각형 분포하중과 집중하중이 작용하고 있다. 두 지지점의 수직반력(R_A, R_B)이 같다면, 집중하중 P의 크기[kN]는? (단, 보의 자중은 무시한다)

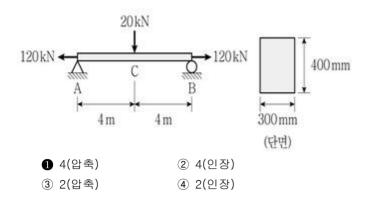

11. 그림과 같은 평면응력 상태($\sigma_x = -60 MPa$, $\sigma_y = -20 MPa$)일 때, 최대전단응력의 크기(τ_{max})는?


12. 그림과 같이 단면 폭 100mm, 높이가 200mm의 직사각형 단면을 갖는 단순보가 있다. 허용휨응력(σ_a)이 60MPa이고, 허용전단응력(τ_a)이 1MPa이라면, 허용휨응력을 적용시킨 최 대집중하중(P_{max(τx)})과 허용전단응력을 적용시킨 최대집중하 중(P_{max(τx)})과의 비(P_{max(τx)})는? (단, 선형탄성이론을 적용하고, 휨강성 티는 일정하며, 구조물의 자중은 무시한 다)

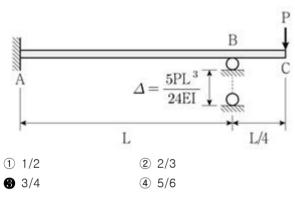

13. 그림과 같은 캔틸레버보에 집중하중 P와 집중모멘트 M이 작용할 때, A점에 발생하는 처짐의 크기는? (단, 보의 휨강성 티는 일정하고, 보의 자중은 무시한다)


14. 그림과 같이 축강성(EA)이 일정한 트러스 구조물에 수직하중 P가 작용하고 있다. 부재 BD와 부재 CD의 부재력의 비 (F_{BD}/F_{CD})는? (단, 미소변형이론을 적용하고, 구조물의 자중은 무시한다)

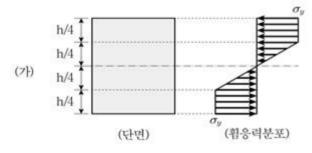

15. 그림 (가)와 같은 양단이 핀 지지된 길이 5m 기둥의 오일러 좌굴하중(P_c)의 크기가 160kN일 때, 그림 (나)와 같은 양단 고정된 길이 4m 기둥의 오일러 좌굴하중의 크기[kN]는? (단, 두 기둥의 단면은 동일하고, 탄성계수는 같으며, 구조 물의 자중은 무시한다)

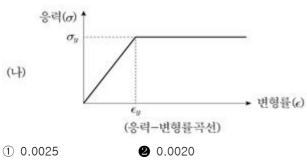

16. 그림과 같이 B점에 내부힌지가 있는 게르버보에서 C점에서 의 휨모멘트의 영향선으로 옳은 것은?

17. 그림과 같이 집중하중 P가 작용하는 단순보에서, 지지점 B 에서 θ = 60° 경사면에 반력 R_B 가 작용한다. 지지점 B에서 반력 R_B 의 크기[kN]는? (단, 보의 자중은 무시한다)



18. 그림과 같이 단면 폭 300mm, 높이가 400mm의 직사각형 단면을 갖는 단순보가 있다. 이 단순보가 축방향으로 120kN 의 인장력을 받고, 수직하중 20kN을 받을 때, 보 중앙(C점) 의 단면 최상부에 발생하는 응력의 크기[MPa]는? (단, 보의 자중은 무시한다)




- 19. 그림과 같이 구조물의 C점에 하중 P가 작용하여 지지점 B
 - 의 지점침하가 $\Delta=rac{5P\ L^3}{24E\ I}$ 만큼 발생하였다. 이때 B점에서 발생하는 반력 R_B 와 C점에서 작용하는 하중 P의 비

 $\left(rac{R_{B}}{P}
ight)$ 는? (단, 보의 휨강성 티는 일정하고, 보의 자중은 무시한다)

20. 직사각형 단면을 가지는 보에 휨모멘트가 작용하여 그림 (가)와 같이 단면에 응력분포가 발생하였다. 보의 재료는 그림 (나)와 같이 완전탄소성거동을 한다고 가정하였을 때, 보의 단면에 발생하는 최대변형률의 크기는? (단, 그림 (나)는 압축과 인장에서 동일하게 적용되며, 항복응력(σ_y)은 200MPa, 탄성계수(E)는 200GPa이다)

③ 0.0015 ④ 0.0010

전자문제집 CBT PC 버전 : <u>www.comcbt.com</u> 전자문제집 CBT 모바일 버전 : <u>m.comcbt.com</u> 기출문제 및 해설집 다운로드 : www.comcbt.com/xe

전자문제집 CBT란?

종이 문제집이 아닌 인터넷으로 문제를 풀고 자동으로 채점하며 모의고사, 오답 노트, 해설까지 제공하는 무료 기출문제 학습 프 로그램으로 실제 시험에서 사용하는 OMR 형식의 CBT를 제공합 니다.

PC 버전 및 모바일 버전 완벽 연동 교사용/학생용 관리기능도 제공합니다.

오답 및 오탈자가 수정된 최신 자료와 해설은 전자문제집 CBT 에서 확인하세요.

1	2	3	4	5	6	7	8	9	10
4	4	2	1	2	3	3	4	3	3
11	12	13	14	15	16	17	18	19	20
2	1	1	1	4	4	1	1	3	2